

# **280-4A4-EM** WINTER 2023 Department of Avionics

# **COURSE OUTLINE**

# COURSE: Alternate current avionics

PROGRAM: 280.C0 Aircraft Maintenance Technology

**DISCIPLINE:** 280 Aeronautics

WEIGHTING: Theory: 2

Practical Work: 2

Personal Study : 2

| Teacher(s)            | Office | æ    | 🖂 email                                |
|-----------------------|--------|------|----------------------------------------|
| Chevalier, Mathieu    | A-192  | 4681 | mathieu.chevalier@cegepmontpetit.ca    |
| Daigle, Jean-François | A-192  | 4638 | jean-francois.daigle@cegepmontpetit.ca |
| Desruisseaux, Benoit  | A-187  | 4486 | benoit.desruisseaux@cegepmontpetit.ca  |
| Gagnon, Marie-Hélène  | A-192  | 4131 | marie-helene.gagnon@cegepmontpetit.ca  |
| Gillard, Pierre       | A-187  | 4552 | pierre.gillard@cegepmontpetit.ca       |
| Laurin, Nicholas      | A-192  | 4665 | nicholas.laurin@cegepmontpetit.ca      |
| Lavallée, Éric        | A-187  | 4132 | eric.lavallee@cegepmontpetit.ca        |
| Levasseur, Jacques    | A-187  | 4399 | jacques.levasseur@cegepmontpetit.ca    |
| Morin, Frédéric       | A-187  | 4397 | fa.morin@cegepmontpetit.ca             |
| Parenteau, Martin     | A-192  | 4675 | martin.parenteau@cegepmontpetit.ca     |
| Richer, Jean-François | A-192  | 4130 | jean-francois.richer@cegepmontpetit.ca |
| Thibaudeau, Fannie    | A-192  | 4684 | fannie.thibaudeau@cegepmontpetit.ca    |
| Arfi Mohamed, Amine   | A-187  |      | mohamedamine.arfi@cegepmontpetit.ca    |

# **OFFICE HOURS**

|           | MONDAY | TUESDAY | WEDNESDAY | THURSDAY | FRIDAY |
|-----------|--------|---------|-----------|----------|--------|
| Morning   |        |         |           |          |        |
| Afternoon |        |         |           |          |        |
| Other     |        |         |           |          |        |

| Coordinator(s)                                  | Office         | 🕿 extension  | ⊠ email                                                                      |
|-------------------------------------------------|----------------|--------------|------------------------------------------------------------------------------|
| -<br>Richer, Jean-François<br>Parenteau, Martin | A-192<br>A-192 | 4130<br>4675 | jean-francois.richer@cegepmontpetit.ca<br>martin.parenteau@cegepmontpetit.ca |

# CONTEXT OF THIS COURSE IN THE PROGRAM

This course is offered in the fourth term of the program. It is assumed that students who enrol in the course have passed the course in their preceding term, 280-3D4 DC Avionics. Students who do not meet this condition may still enrol in the course, the Avionics Department believes that these students will find it more difficult to pass the course.

By the end of this course, students will have developed:

- the ability to analyze circuits and electrical systems, generation circuits, distribution control of single and twin engine aircraft and various electric and electronic systems found in aeronautics
- the ability to apply methods and procedures to solve simple problems commonly encountered in aircraft electrical systems.

# Students must keep this course outline for the duration of their studies, as it will be useful for the comprehensive assessment at the end of the program.

**Transports Canada**: This course outline meets the requirements of Training Organisation Certification Manual (MCF) of Transport Canada. The Department applies Transport Canada standard which allows a maximum absence of 5% for the course (theory and laboratory). The department compiles absences of all students enrolled in Aircraft Maintenance (280.03) and Avionics (280.04) according to Transport Canada requirements. The application of Transport Canada policies regarding absences is available on the college website and in the student agenda under the heading « Privilèges accordés par Transports Canada ».

# COMPETENCIES OF THE EXIT PROFILE (STUDENT SKILL PROFILES)

Student will be able to perform repairs, maintenance and troubleshooting on simple electrical systems on aircraft.

#### **MINISTERIAL OBJECTIVE(S) AND COMPETENCIES**

025T To maintain direct-current circuits on an aircraft.

# (training duration: 100 course periods) Distribution of the 025T competence in the program: 3rd term 280-3D4-EM: DC Avionics 4th term 280-4A4-EM: AC Avionics 6th term 280-6A3-EM: Avionics Maintenance Total: 100 periods

#### 0263 To check the operation of simple alternating-current currents on an aircraft.

#### (training duration: 70 course periods)

Distribution of the 0263 competence in the program:

| 3 <sup>rd</sup> term   | 280-3D4-EM: DC Avionics              | 5 periods out of 70  |
|------------------------|--------------------------------------|----------------------|
| 4 <sup>th</sup> term   | 280-4A4-EM: AC Avionics              | 30 periods out of 70 |
| 4 <sup>th</sup> term   | 280-605-EM: Aircraft Instrumentation | 5 periods out of 70  |
| ▶ 6 <sup>th</sup> term | 280-6A3-EM: Avionics Maintenance     | 30 periods out of 70 |
| Total:                 |                                      | 70 periods           |

# **TERMINAL OBJECTIVE OF THE COURSE (FINAL COURSE OBJECTIVE)**

At the end of this course, the student will be able to troubleshoot basic aircraft electrical systems.

# **TEACHING AND LEARNING STRATEGIES**

## **COVID Context:**

## Theory:

Theoretical courses will be conducted remotely, supported by Teams meetings each week. The student will find in Moodle readings, videos, presentation, and exercises that he will have to perform each week. Reviews will be performed in attendance.

## **Practical Work:**

The acquisition of knowledge will be facilitated by a series of experiments divided into 15 laboratory sessions. Due to the COVID context, two laboratories will be conducted remotely. All the documentation for each of the laboratories can be found on Moodle (even for the laboratories in attendance).

When a document is to be deposited by the student (e.g.: laboratory report), this document must be deposited on Moodle in PDF.

# **COURSE PLAN**

| Element of the Ministry<br>Objective | Learning Objectives                                                                                                                                              |  |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| #2 Inspect the                       | 1. Describe the characteristics of a capacitor.                                                                                                                  |  |  |  |  |
| direct current                       | 2. Analyze circuits formed by a DC voltage source, a resistor and capacitors.                                                                                    |  |  |  |  |
| operation of passive                 | 3. Describe the basic characteristics of a coil.                                                                                                                 |  |  |  |  |
| components                           | 4. Analyze a circuit formed by a DC voltage source, a resistor and coils                                                                                         |  |  |  |  |
|                                      | 5. Interpret blueprints and diagrams that include semi-conductor elements.                                                                                       |  |  |  |  |
| #3. Inspect the                      | 1. Describe the general theory of magnetization; make a connection between                                                                                       |  |  |  |  |
| direct-current                       | magnetic permeability and temporary and permanent magnets; define                                                                                                |  |  |  |  |
| electrical power                     | residual magnetism                                                                                                                                               |  |  |  |  |
| supply and                           | 2. Describe the general theory of electromagnetism and analyze the principles.                                                                                   |  |  |  |  |
| distribution system                  | 3. Check the operation of a DC generator                                                                                                                         |  |  |  |  |
| of an aircraft.                      | 4. Check the operation of a DC electric motor                                                                                                                    |  |  |  |  |
|                                      | 5. Check a DC system (alternator paralleling controlled by a single control box)                                                                                 |  |  |  |  |
|                                      | of a pistons twin-engine aircraft.                                                                                                                               |  |  |  |  |
|                                      | 6. Check a DC system (with alternator paralleling each controlled by a regulator                                                                                 |  |  |  |  |
|                                      | in continuous operation) of a pistons twin-engine aircraft                                                                                                       |  |  |  |  |
|                                      | 7. Check a DC generation system of a turbine twin-engine aircraft                                                                                                |  |  |  |  |
|                                      | <ol> <li>Check the DC distribution system in a pistons twin-engine aircraft and a<br/>turbine twin-engine aircraft while respecting safety procedures</li> </ol> |  |  |  |  |
|                                      | 9. Diagnose the malfunctions of the DC power and distribution systems of a                                                                                       |  |  |  |  |
|                                      | pistons twin-engine aircraft and a turbine twin-engine aircraft                                                                                                  |  |  |  |  |
| # 7. Perform the                     | 1. Identify relevant information for Electrical-Load Analysis for a twin-engine                                                                                  |  |  |  |  |
| Electrical-Load                      |                                                                                                                                                                  |  |  |  |  |
| Analysis of a direct-                | - AC 43 13                                                                                                                                                       |  |  |  |  |
|                                      | - FAR 23                                                                                                                                                         |  |  |  |  |
| aircraft.                            | - JAR 23                                                                                                                                                         |  |  |  |  |
|                                      | - Manufacturer's Manuals                                                                                                                                         |  |  |  |  |
|                                      | 2. Identify the regulations concerning requirements to create a new Electrical-                                                                                  |  |  |  |  |
|                                      | Load Analysis                                                                                                                                                    |  |  |  |  |

#### 025T Maintain direct-current circuits on an aircraft.

| 0263 | Inspect simple alternating-current circuits on an aircraft. |
|------|-------------------------------------------------------------|
|------|-------------------------------------------------------------|

| Element of the Ministerial<br>Objective                  | Learning Objective                                                                                                                                                                                                                                         |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1. Inspect AC circuits on an aircraft.                  | 1. Identify a sinusoidal wave form and its characteristics                                                                                                                                                                                                 |
|                                                          | <ol> <li>Use Ohm's Law and Kirchhoff's Laws to calculate the parameters of a<br/>resistive circuit powered by an alternative source.</li> </ol>                                                                                                            |
|                                                          | <ol> <li>Define the characteristics of AC-powered passive components:<br/>coils, capacitors, etc.</li> </ol>                                                                                                                                               |
|                                                          | <ol> <li>Analyze AC-powered circuits containing resistors, capacitors<br/>and coils.</li> </ol>                                                                                                                                                            |
|                                                          | 5. Check a faulty circuit using a Multimeter.                                                                                                                                                                                                              |
| #2. Inspect passive components AC operation              | 1.Use alternating current to check various passive components to determine their condition.                                                                                                                                                                |
| #3. Inspect AC                                           | 1. Check the operation of a transformer.                                                                                                                                                                                                                   |
| electrical generation                                    | 2. Check the operation of an AC generator                                                                                                                                                                                                                  |
| and distribution on an aircraft.                         | 3. Check the operation of an AC electric motor                                                                                                                                                                                                             |
|                                                          | 4. Check operation of special electrical machines.                                                                                                                                                                                                         |
|                                                          | 5. Check AC generation system of an aircraft whose primary generation is DC.                                                                                                                                                                               |
|                                                          | 6. Check the AC generation system on aircraft whose primary generation is AC                                                                                                                                                                               |
| #8. Make an Electric<br>load analysis of<br>an aircraft. | <ol> <li>Identify the information relevant to the analysis of AC electrical charge generation for aircraft<br/>with primary DC generation         <ul> <li>FAR 23</li> <li>AC 43.13</li> <li>JAR 23</li> <li>Manufacturer's Manuals</li> </ul> </li> </ol> |
|                                                          | <ul> <li>2. Identify information relevant to the analysis of AC electrical load generation for aircraft with primary AC generation</li> <li>FAR 25</li> <li>AC 43.13</li> <li>JAR 25</li> <li>Manufacturer's manuals</li> </ul>                            |
|                                                          | 3. Identify regulations that require a mandatory new electrical load analysis                                                                                                                                                                              |

# Term Calendar

| Peri             | ods                                                                                                                                                                          |                                                                                                                                    | Content                                                                                                                                                                                                                                                                                                                                                                                                     | Personal study                                                                                                                                         | Objectives                                                                   |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Week 1           | <ul> <li>Review of fundamental electric principals.</li> <li>Presentation of the course outline</li> <li>Summary exercises on simple aircraft electrical circuits</li> </ul> |                                                                                                                                    | <ul> <li>Readings and exercises:</li> <li>Corresponding chapters in the reference manual and in the course notes.</li> <li>Circuit analysis.</li> </ul>                                                                                                                                                                                                                                                     | #2.5 (025T)                                                                                                                                            |                                                                              |
| Weeks 2 and 3    | 4<br>per.                                                                                                                                                                    | Study of<br>electrical<br>generation and<br>distribution<br>control circuits of<br>twin-engine<br>pistons and<br>turbine aircraft. | <ul> <li>Battery and GPU circuits</li> <li>Starting circuit</li> <li>Ignition circuits</li> <li>Control circuit of DC generators and<br/>alternators.</li> <li>Monitoring</li> <li>Paralleling of DC generators and<br/>alternators</li> <li>Regulator-alternator relationship in twin-<br/>engine aircraft</li> <li>Piper Aztec, Cessna 337 and<br/>Aerocommander will be used as<br/>examples.</li> </ul> | <ul> <li>Readings and exercises:</li> <li>Corresponding chapters in the reference manual and in the course notes.</li> <li>Circuit analysis</li> </ul> | #3.5 et #3.6,<br>#3,7, #3.8 et<br>#3.9, #7<br>(025T), #8.1<br>et #8.3 (0263) |
| Weeks<br>4 and 5 | 4<br>per.                                                                                                                                                                    | Semi-conductors circuit analysis.                                                                                                  | <ul> <li>Zener diode</li> <li>Bipolar transistor</li> <li>Transistor used in commutation.</li> </ul>                                                                                                                                                                                                                                                                                                        |                                                                                                                                                        |                                                                              |
| Week 6           | 2<br>per.                                                                                                                                                                    | Sinusoidal wave<br>(sine wave)<br>Application of<br>Ohm's Law on a<br>resistive AC<br>circuit                                      | <ul> <li>Characteristics of the sine wave (period, frequency, special values, pulse, phase angle, phase shift)</li> <li>AC voltages and frequencies used in aeronautics</li> <li>Simple circuits with a single loop</li> <li>Y and Delta configuration of tree-phase electric power systems</li> </ul>                                                                                                      | <ul> <li>Readings and exercises:</li> <li>Corresponding chapters in the reference manual and in the course notes.</li> </ul>                           | #2.1 à #2.4<br>(025T)                                                        |
| Week 7           | 2<br>per.                                                                                                                                                                    | Test 1 (20 points)<br>Semi-conductors; e                                                                                           | e aircrafts; AC                                                                                                                                                                                                                                                                                                                                                                                             | #2, #3.5 à<br>#3.9, #7<br>(025T)                                                                                                                       |                                                                              |
| Week 8           | 2<br>per.                                                                                                                                                                    | Transformers<br>and rectifiers                                                                                                     | <ul> <li>The ideal transformer</li> <li>Transformer ratio</li> <li>Center-tap transformer</li> <li>Multi-tap transformer</li> <li>Autotransformer</li> <li>Autotransformer</li> <li>Diode rectifier circuits</li> <li>Applications: turbine ignition circuit;</li> <li>Ignition with magneto.</li> </ul>                                                                                                    | <ul> <li>Readings and exercises:</li> <li>Corresponding chapters in the reference manual and in the course notes.</li> </ul>                           | #3.1 (0263)                                                                  |

| Peri           | ods    |                                                                                                                                                                                                                                                                                     | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Personal study                                                                                                                                                                                                                              | Objectives                             |  |
|----------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| Weeks 9 to 11  | 6 per. | AC generation<br>and utilities<br>systems                                                                                                                                                                                                                                           | <ul> <li>Primary AC generation</li> <li>Aircraft power supplied by Ground Power<br/>Unit (GPU) or Auxiliary Power Unit (APU)</li> <li>Alternators paralleling with balanced load</li> <li>Operation in case of loss of an alternator</li> <li>GCU control circuits</li> <li>Generation system monitoring</li> <li>Using the Challenger 601 documentation,<br/>study of the brushless alternators.</li> <li>Study of aircraft with AC electric<br/>generation.</li> <li>Examples of AC utilities (hydraulic pump<br/>drives, flap motor of the Challenger 601).</li> </ul> | <ul> <li>Readings and exercises:</li> <li>Corresponding chapters in the reference manual and in the course notes.</li> <li>Homework:<br/>Questionnaire on the Challenger circuits, the transformers and the electrical machines.</li> </ul> | #3.6 (025T),<br>#8.2 et #8.3<br>(0263) |  |
| Week 12        | 2 per. | AC electrical<br>machines                                                                                                                                                                                                                                                           | <ul> <li>Three-phase rectifier</li> <li>The TRU (transformer-rectifier-unit_</li> <li>Rotating inverter</li> <li>Tree-phase induction motor (IDG)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Readings and exercises:</li> <li>Corresponding chapters in the reference manual and in the course notes.</li> </ul>                                                                                                                | #3.2 à #3.5<br>(0263)                  |  |
| Week 13 and 14 | 4 per. | Capacitors and<br>coils in direct<br>current and in AC<br>circuits                                                                                                                                                                                                                  | <ul> <li>Description of the physical characteristics that influence the capacity of a capacitor and the inductance of a coil</li> <li>Description of the charging and discharging process</li> <li>Grouping capacitors and coils</li> <li>Capacitive fuel level gauge.</li> <li>Description of the magnetic field produced by a basic coil.</li> <li>Capacitive and inductive reactance</li> <li>Voltage current phase shift through a capacitor and inductor</li> <li>Impedance triangle</li> <li>Active, reactive and apparent power</li> </ul>                         | Readings and exercises:<br>Corresponding chapters in the<br>reference manual and in the<br>course notes.                                                                                                                                    | #1.3 et #1.4<br>(0263)                 |  |
| Week 15        | 2 per. | Final Comprehensive Evaluation (40 points)<br>Semi-conductors; electrical circuits for twin-engine piston and turbine aircrafts; DC capacitors and coils;<br>sinusoidal waves; AC capacitors and coils; transformers and rectifiers; AC electric machines, AC generation<br>systems |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                             |                                        |  |

# **Practical Work:**

| Per           | iods                                                                                                                                                                                                                                                                  | Content                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                         | Personal Study                                                                                                                                       | Objectives                                |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| Week 1        | <ul> <li>2 per. Introduction to the course</li> <li>Simulator for twinengine electrical generation system.</li> <li>Course Outline</li> <li>Review of the safety rules</li> <li>Introduction to the simulator for twinengine electrical generation system.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                          | Laboratory Preparation:<br>Define the nominal theoretical<br>values of voltages (battery,<br>external power, and alternator) in<br>the circuits.                                                                                                                                                                                                        | #3.5,#3.6,<br>#3.8(025T)                                                                                                                             |                                           |  |
| Weeks 2 to 5  | 8 per.                                                                                                                                                                                                                                                                | Troubleshooting a<br>DC generation<br>system of a twin-<br>engine piston aircraft                                                                                                                                                                                                                                                                                                                        | <ul> <li>Measurements of voltages on different<br/>components in normal operation.</li> <li>Analysis of the normal values obtained</li> <li>Detection of abnormal operation and<br/>identification of the defective component by<br/>continuity measurements and comparison wit<br/>the nominal valued - open circuit and short<br/>circuit.</li> </ul> | Review of the electrical schematics<br>and troubleshooting techniques.                                                                               | #3.9 (025T)                               |  |
| Weeks 6 and 7 | 4 per.                                                                                                                                                                                                                                                                | <ul> <li>A) Test: Individual exam on troubleshooting using the simulator (2 periods per student).<br/>Failures are open circuit and short-circuit types.</li> <li>B) Static inspection of an alternator – Individually 2 periods. <ul> <li>According the manufacturer's standards and procedures</li> <li>Laboratory report: report and comment the results of the manipulations.</li> </ul> </li> </ul> |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                      |                                           |  |
| Week 8        | 2 per.                                                                                                                                                                                                                                                                | King Air AC<br>distribution and<br>inverters<br>inspection                                                                                                                                                                                                                                                                                                                                               | ribution and Air, Learjet rters                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                      |                                           |  |
| Week 9        | 2 per.                                                                                                                                                                                                                                                                | Become<br>familiar with<br>and<br>troubleshooting<br>performing exercises<br>using a<br>simulation software<br>for AC primary<br>electrical generation<br>systems.                                                                                                                                                                                                                                       | <ul> <li>Become familiar with the simulator operation.</li> <li>Become familiar with the systems in normal condition.</li> <li>Check proper operation of the circuits and systems on the simulator.</li> </ul>                                                                                                                                          | Review primary AC<br>generation on board an aircraft and its<br>distribution.<br>Use of manufacturer's technical<br>documentation.<br>ATA100 System. | #1.5, #2.1,<br>#3.6 (0263)<br>#3.8 (025T) |  |

| Peri            | iods   | Content                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    | Personal Study                                                                                                                                                                       | Objectives                                |
|-----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Weeks 10 and 11 | 4 per. | Troubleshooting<br>exercises on AC<br>Primary Electrical<br>Generation systems on<br>simulation software.                                                       | <ul> <li>Activities on aircrafts in rotation:</li> <li>Power-up of the aircraft using the AC and DC ground power unit</li> <li>Localize Challenger 601 generation system components (TRU, IDG, GLAC, GTC, GCU etc.)</li> <li>Engine starting and power up the IDGs on the cockpit trainer</li> <li>Deployment ant retraction of the RAT</li> </ul> | Review of theory course notes                                                                                                                                                        | #3.6 (0263)                               |
| Weeks 12 and 13 | 2 per  | Aircraft<br>troubleshooting<br>optimization (CL-601)                                                                                                            | <ul> <li>Check the operation of the simulator circuits and systems.</li> <li>Make a diagnosis on the status of the systems</li> <li>Troubleshooting of DC system.</li> </ul>                                                                                                                                                                       | Review of theory course notes                                                                                                                                                        | #1.5, #2.1,<br>#3.6 (0263)<br>#3.8 (025T) |
| Before Week 14  |        | FORMATIVE –<br>Exam on fault<br>detection on AC<br>primary electrical<br>generation systems<br>and DC system<br>troubleshooting using<br>a simulation software. | <ul> <li>Following weeks 9-11 of practice and personal study on the CL-601 simulator, issue of a fault resolution and its documentation.</li> <li>The documentation to be provided is the same as for the week 15 exam.</li> </ul>                                                                                                                 | Review of course notes taken during<br>practice sessions.<br>Practice other failures on the simulator.<br>Revision of teacher comments following<br>the correction of the formative. | #1.5, #2.1,<br>#3.6 (0263)<br>#3.8 (025T) |
| Week 15         | 2 per. | Exam on fault<br>detection on AC<br>primary electrical<br>generation systems<br>and DC system<br>troubleshooting using<br>a simulation software                 | <ul> <li>Check the operation of the simulator circuits and systems.</li> <li>Make a diagnosis on the status of the systems</li> <li>Troubleshooting of DC system.</li> <li>DURATION: 100 minutes per student</li> </ul>                                                                                                                            | Review of primary AC generation on<br>board an aircraft and its distribution.<br>Use of manufacturer's technical<br>documentation.<br>ATA100 System.                                 | #1.5, #2.1,<br>#3.6 (0263)<br>#3.8 (025T) |

# SYNTHESIS OF SUMMATIVE EVALUATION METHODS

## Theory

| Description of Evaluation<br>Activity                                                                                                                                                         | Context and method of<br>evaluation                                                | Learning<br>Objective(s)        | Evaluation Criteria                                                  | Due Date (date<br>assignment is due or<br>exam given) | Weighting (%) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------|-------------------------------------------------------|---------------|
| Quiz<br>On the content of the homework                                                                                                                                                        | 4 formative quiz                                                                   | #2, #3.5 à #3.9, #7<br>(025T)   |                                                                      | Weeks 4 and 6                                         | Formative     |
| performed in the corresponding weeks.                                                                                                                                                         |                                                                                    | #1.1 à #1.4, #3 et #8<br>(0263) |                                                                      | Weeks 11 and 14                                       | Formative     |
| Test 1<br>Verification, calculation and<br>analysis of control circuits, of<br>semi-conductor circuit and DC<br>circuits with coils and capacitors.                                           | Duration: 2 periods<br>Without documentation                                       | #2, #3.5 to #3.9, #7<br>(025T)  | Accuracy of<br>calculations, diagnosis<br>and applied<br>methodology | Week 7                                                | 20%           |
| FINAL EVALUATION OF THE<br>COURSE<br>Calculation of parameters,<br>verification of operation and<br>diagnosis of anomalies on AC<br>and DC electrical generation and<br>distribution systems. | Duration: 2 periods<br>Page of notes (letter format,<br>double sided, handwritten) | All                             |                                                                      | Week 15                                               | 40%           |

Sub-total: 60%

# **Practical Work**

| Description of Evaluation<br>Activity                                                                      | Context and method of evaluation                                                                                                                 | Learning<br>Objective(s)                  | Evaluation Criteria                                                                                 | Due Date<br>(date assignment is due, or<br>exam is held)   | Weighting (%) |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------|
| Weeks 6 or 7 –<br>Troubleshooting test                                                                     | Individual on the simulator<br>(see<br>the laboratory description).                                                                              | #3.5, #3.6, #3.8 et<br>#3.9<br>(025T)     | · · · · · ·                                                                                         | Week 6 or 7.<br>2 periods per<br>student                   | 15%           |
| Week 10 and 11<br>Maintenance activities on<br>the generation and<br>distribution systems of the<br>CL-601 | Activities in the hangar, in<br>rotation on the CL-601 and on<br>the cockpit trainer.<br>One laboratory report to<br>complete for each activity. | #1.1, #3.1à #3.3 et<br>#3.6<br>(0263)     | Correct explanations,<br>accurate<br>measurements,<br>accurate location of<br>identified components | Lab report due at<br>the end of the<br>laboratory, week 11 | 5%            |
| Week 15 – Exam on AC and<br>DC<br>systems check-up for an aircraft<br>with AC primary system               | DC troubleshooting<br>AC or DC systems<br>operational check                                                                                      | #1.5, #2.1, #3.6<br>(0263)<br>#3.8 (025T) | Correct methodology<br>Correct<br>measurements and<br>diagnostic                                    | Laboratory Week<br>15.                                     | 20%           |

Sub-total: TOTAL:

40% **100%** 

If a student is absent for an activity or a part of an activity, he or she will receive the mark of zero for the report that corresponds to this activity or part of the activity during which he or she was absent. If the absence is for a serious and documented reason, the student will not be penalized.

# **REQUIRED MATERIAL**

- Work clothes and accessories required by the college to work in the hangar (safety shoes, safety glasses)
- Theory and Workshop documents and presentations (available on LEA)
- Manufacturers documents (manuals and catalogues)

# MANDATORY MANUAL

EISMIN, THOMAS K. – Aircraft Electricity & Electronics, 7th Edition, Glencoe, 2019.

## **MEDIAGRAPHY**

Manual available on loan at the library:

BYGATE, J.E. - Aircraft Electrical Systems, Single and Twin Engine. IAP Inc., 1990.

Additional documents are available on the internet and the college's network (as indicated by the teacher).

## **REQUIREMENTS TO PASS THE COURSE**

## (1) Passing Mark

The passing mark for this course is 60% (PIEA, article 5.1m).

# (2) Course Attendance for Summative Evaluations

Attendance at summative evaluation activities is mandatory. (PIEA, article 5.2.5.1).

#### (3) Submitting Assignments

Homework required by the teacher must be handed in at the established date, place and time. The penalties associated with delays are established according to departmental rules (PIEA, article 5.2.5.2). In case of delay the penalties are:

- See section « Règles des départements » at the following website link: <u>http://guideena-en.cegepmontpetit.ca/department-rules/</u>

#### (4) **Presentation of Written Work**

Students must follow the standards adopted by the College for written work (*Normes de présentation matérielle des travaux écrits*). These can be found in the documentation centre on the College web site (<u>http://www.cegepmontpetit.ca/normes</u>.) under the heading **« Méthodologie ».** 

The **departmental penalties** for non-compliance with Written Work Standard Presentation (PIEA, article 5.3.2) are:

- See section « Règles des départements » at the following link: <u>http://guideena-en.cegepmontpetit.ca/department-rules/</u>

# (5) Quality of the English language

The Teacher expects the use of proper English terminology. The formative evaluation also relates to the quality of oral and written English. If need be, the teacher will recommend that students register for an English course. When a given homework is considered to be unacceptable because of the quality of written English, the correction of this work will be delayed until the work is returned in the standards set by the teacher. In this case, penalties apply to any delay in submitting homework assignments. The teacher may allocate 10% of the mark for any assignment to the quality of oral or written English.**METHODS FO COURSE PARTICIPATION** 

#### Laboratory safety and use of the premises:

Students must be under the supervision of a teacher or a technician whenever they are in the laboratory or using the equipment, unless otherwise indicated.

#### For online classes:

Any student whose conduct in the laboratory poses a risk to others will receive a warning from the teacher and then be excluded from the laboratory until the case can be reviewed by the teacher and the coordinator of the Avionics Department.

By attending online classes through videoconference technology, the student understands that his image and voice may be captured on video in the context of his courses and agrees to this. Videos are only visible during live classes and by the teacher and other participants exclusively.

For pedagogical reasons, some courses may be recorded. It is the teacher's responsability to clearly inform students beforehand when their images and voices are to be captured on video. Any student opposed to his image and/or voice being recorded may turn off his camera and microphone but will be required to participate in writing through means established by the teacher. Otherwise, students who activate their cameras or their microphones are deemed to have agreed to their images and voices being taped. These recordings of courses will be available for the express and sole use of those students registered in the courses for the duration of the semester. It is strictly forbidden to broadcast these recordings in any public manner or to use them other than for pedagogical purposes.

No student may record an online course without prior consent from the teacher. Students whose personal information (voices and images) is captured on video may exercise such remedies as provided by the right to access records and the right of rectification per the Act respecting access to documents held by public bodies and the protection of personal information through the Cegep's Secretary General's Office.

## **OTHER DEPARTMENTAL REGULATIONS**

Students are encouraged to consult the website for the specific regulations for this course: <a href="http://guideena-en.cegepmontpetit.ca/department-rules/">http://guideena-en.cegepmontpetit.ca/department-rules/</a>

# INSTITUTIONAL POLICIES AND REGULATIONS

All students enrolled in the École nationale d'aérotechnique of Édouard-Montpetit CEGEP must be aware of and comply with the contents of institutional policies and regulations. In particular, the *Politique institutionnelle de la langue française (PILF), the Politique pour un milieu d'études et de travail exempt de harcèlement et de violence (PPMÉTEHV),), the conditions of admission and academic progress, the procedure dealing with student complaints within educational relations.* 

The complete version of these policies and regulations is available on the CEGEP website at the following address: <u>http://www.cegepmontpetit.ca/ena/a-propos-de-l-ecole/reglements-et-politiques</u>. In case of discrepancy between the version appearing elsewhere and the complete version, the complete version will be applied and will be considered the official version for legal purposes.

# **STUDENT ACCESSIBILITY CENTER - FOR STUDENTS WITH DISABILITIES**

Students having received a professional diagnosis of impairment (motor skills, neurological, organic, sensory, learning difficulties, mental health, autism spectrum disorder or other) or suffering from a temporary medical condition may request special accommodations.

Students seeking these accommodations must forward their diagnosis to the CSA by either MIO to « Service, CSA-ENA » or email to « <u>servicesadaptesena@cegepmontpetit.ca</u> ».

Students already registered with the CSA must communicate with their teachers at the beginning of the semester to discuss those accommodations they have been awarded by the CSA.

# APPENDIX

None.