

COURSE OUTLINE

COURSE:	Maintenance of Aircraft Flight Controls and Control Surfaces		
PROGRAM:	280.C0 Aircraft Maintenance Technology		
DISCIPLINE:	280 Aeronautics		
WEIGHTING:	Theory: 2	Practical Work: 3	Personal Study : 1

Instructor(s)	Office	Extension	🖂 Email or Website
Stéphanie Arpin	C-182	4630	stephanie.arpin@cegepmontpetit.ca

OFFICE HOURS

	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
Morning					
Afternoon					

Coordinator(s)	Office	Extension	🖂 Email or Website
Dany Charette	B-125	4661	dany.charette@cegepmontpetit.ca
Louis Guimont	B-125	4703	louis.guimont@cegepmontpetit.ca

CONTEXT OF THIS COURSE IN THE PROGRAM

This course is offered during the fifth session of the Aircraft Maintenance Program.

The *Maintenance of Aircraft Flight Controls and Control Surfaces* course prepares students for the general maintenance techniques of aircraft flight controls and control surfaces.

The objectives of this course, together with the prerequisite course, "Introduction to Aeronautics," provide students with the theoretical and practical skills they will need for their final courses on airplane and helicopter internships for aircraft maintenance technicians.

As in all sectors, basic knowledge of aircraft flight controls and control surfaces is essential in order to understand more complex systems and provide effective maintenance. The vast majority of aircraft currently in service follow the basic principles demonstrated in this course.

Upon completion of this course, students will have developed the ability to:

- gather necessary information;
- plan work;
- perform activities related to inspecting and checking flight controls;
- adjust the flight control system on an airplanes and helicopters;
- perform activities related to repairing a control surface;
- perform activities related to the repair of components of flight control;
- store material appropriately and clean the work place.

Students must keep this course outline for the duration of their studies as it will be useful for the comprehensive assessment at the end of the program.

Transport Canada: This course outline meets the requirements of Training Organisation Certification Manual (MCF) of Transport Canada. The Department applies Transport Canada standard which allows a maximum absence of 5% for the course (theory and laboratory). The department compiles absences of all students enrolled in Aircraft Maintenance (280.C0) and Avionics (280.D0) according to Transport Canada requirements. The application of Transport Canada policies regarding absences is available on the college website and in the student agenda under the heading « Privilèges accordés par Transports Canada ».

MINISTRY OBJECTIVE(S) AND COMPETENCIES

0267 To maintain flight controls and flight control surfaces.

TEACHING AND LEARNING STRATEGIES

Theory: First, students will acquire the concepts necessary to carry out the work in the laboratory. Next, emphasis will be placed on the engineering aspect of aircraft controls and control surfaces using oral presentations, discussions and problem solving. Understanding the relationship between the controls and the control surfaces is at the heart of this course. At the end of the course, students will use a problem-solving method through case studies and identify the common problems encountered while servicing control circuits and control surfaces.

The course manual provides students with a guide to promote a better understanding of the theory part of the course. In addition to this, students can consult the internet site for this course and documents posted on LÉA. These resources provide students with answers to questions when working at home.

Practical Work: During the laboratory sessions, the instructor will guide students by using practical demonstrations and provide technical assistance and advice to foster a spirit of research, analysis and synthesis.

It is the responsibility of each student to be involved in the laboratories by following all of the given instructions. The activities listed must be completed by each team member.

COURSE PLAN – THEORY

Block 1: Manuals, Hardware, Tools, Tasks (6 hours)

Learning Objectives	Content	Personal Study Activities
Identify the sources of	 manufacturer's manuals 	
information applicable to	 hardware catalogue 	Consult the internet site for
work on aircraft controls and	 official publications 	280-5A5 and documents posted
control surfaces.	 logbooks 	in LÉA
Identify the hardware used	 AN, MS, NAS coding 	
in control system and		Consult the recommended
control surfaces.		readings.
Describe tools according to	linear and angular measuring tools	
the work to be performed.	 inclinometer 	Review personal notes.
	 tensiometer, mechanical tools 	
	 crimping tools 	
Describe applicable	 installation 	
maintenance tasks.	 removal 	
	 mounting 	
	 disassembly 	
	 adjustment 	
	 repair 	
	 replacement 	
	 inspection 	
	 balancing 	

Week	No. hours	Content of Theory Course
1	2	Review and preparation
2	2	Airworthiness Notice C010, maintenance tasks
3	2	Identify the hardware and Inspection rules

Learning Objectives	Content	Personal Study Activities
Identify the controls and control surfaces of an aircraft and their interrelationships.	 Ailerons, rudder, elevator, tabs (speed and evolution), flaps (high-lift device, hyposustentateurs, airbrakes), airplane controls, helicopter controls, automatic pilot, other mechanisms 	Consult the internet site for 280-5A5 and documents posted in LÉA
Identify the linkages between the controls and the control surfaces.	 mechanics hydromechanics electromechanics electro-hydromechanics 	Consult the recommended readings. Review personal notes.
Explain the aerodynamic effect of the movement of the control surfaces on the aircraft.	 lift pressure coefficient aerodynamic moment 	
Explain the aerodynamic effect of the movement of the control surfaces on the linkages.	hinge momentfluttering	
Apply simple machine concepts to the study of the the control systems and the control surfaces.	 calculating the hinge moment forces in the tubes and cables piloting forces material constraints 	
Explain the operation of various elements of a flight control circuit.	 simple circuit modern circuit centering spring displacement modifier tension regulator stall warning system overload limiter control blocker anti-burst automatic pilot linkages redundancy, reliability 	

Block 2: Control Links "and" Control Surfaces (16 hours)

Week	No. hours	Content of Theory Course	
4	2	Aerodynamics and the hinge moment	
5	2	Mechanical physics, simple machines, forces in tubes, cables	
6	2	Exam No 1	
7&8	6	Mechanical circuits	
9	2	Hydraulic circuits	
10 & 11	2	Dornier vs Challenger, distinction and comprehension of different circuits	

Learning Objectives	Content	Personal Study Activities
Determine the actions to be taken based on the nature of the work to be done.	 Steps: locate relevant information in a maintenance manual and other publications confirm the technical problem compare the inspection results with the technical information use technical documentation to clarify the solution to the technical problem 	Consult the internet site for 280-505 and documents posted in LÉA Consult the recommended readings. Review personal notes.
Organize the actions to be taken based on the nature of the work to be done.	 Find applicable procedures in an aircraft maintenance manual for: installation removal mounting disassemby adjustment repair replacement balancing Determine the parts, the hardware and the support equipment needed to carry out the work Organize the work area: rigor communication cleanliness health and safety 	

Block 3: Maintenance of Aircraft Controls and Control Surfaces (8 hours)

Week	No. hours	Content of Theory Course
12	2	Troubleshooting / Problem-Solving
13	2	ATA procedure redaction activities
14	2	Electrical circuits
15	2	Exam 2

COURSE PLAN - PRACTICAL WORK

THE FOLLOWING OBJECTIVES APPLY AND WILL BE PART OF THE EVALUATION CRITERIA FOR ALL ACTIVITIES IN THE LABORATORY AND HANGARS

Learning Objectives	Content	Personal Study Activities
Choose the actions to be taken based on the work to be done.	 Steps: locate relevant information in a maintenance manual and other publications confirm the technical problem compare the inspection results with the technical information use technical documentation to clarify the solution to the technical problem 	All activities aimed at improving manual dexterity.
Organize the actions to be taken based on the nature of the work to be done.	 Find applicable procedures in an aircraft maintenance manual for: installation removal mounting disassemby adjustment repair replacement inspection balancing Determine the parts, the hardware and the support equipment needed to carry out the work Organize the work area: rigor communication cleanliness 	
Apply the health and safety standards that relate to the work to be done.	 Comply with standards and guidelines 	
Comply with the standards for hazardous materials.	 Using the information system for hazardous materials at work (WHMIS) Using material safety data sheet and taking precautions in handling 	
Store tools and equipment appropriately. Clean the work area.	Following instructionsFollowing instructions	

Learning Objectives	Content	Personal Study Activities
Identify the source of	 Manuafacturer's manuals 	
applicable information for	 Hardware catalogue 	All activities aimed at improving
the work on aircraft controls	 Official publications 	manual dexterity.
and control surfaces.	 Logbooks 	
Identify the hardware used	 Specific AN, MS, NAS coding 	
in the control circuits and		Consult the recommended
control surfaces.		readings.
Describe the tools based on	 linear and angular measuring tools 	
the work to be done.	 inclinometer 	Review personal notes.
	 tensiometer, mechanical tools 	
	 crimping tools 	
Identify the aircraft controls	 Ailerons, rudder, elevator, tabs (speed 	
and control surfaces and	and evolution), flaps (high-lift device,	
their interrelationships.	hyposustentateurs, airbrakes), airplane	
	controls, helicopter controls, automatic	
	pilot, other mechanisms	

Block 1: Manuals, Hardware, Tools, Terminology (12 hours)

Week	No. hours	Content of Practical Course		
1	3	ntroduction to the course, teaching module		
2	3	Maintenance Manual & IPC, Observation, aircraft circuit diagram		
3	3	Flight control maintenance special tools		
4	3	Cables manufacturing		

Learning Objectives	Content	Personal Study Activities	
Describe applicable	 installation 		
maintenance tasks.	 removal 	All activities aimed at improving	
	 mounting 	manual dexterity.	
	 disassembly 		
	 adjustment 		
	 repair 		
	 replacement 		
	 inspection 		
	 balancing 		
Perform an inspection of a	Steps:		
flight control system.	- identifier the different qualitative and		
	standard inspection methods		
	- check compliance with the flight circuit		
	control and the relevant technical		
	information		
	- identify and record defects observed on		
	the flight control circuit		
	 prepare an inspection report 		

Block 2: Inspection and Maintenance Tasks (15 hours)

ACTIVITY PERIODS (week order is subject to be modify)

Week	No. hours	Content of the Practical Course		
5&6	3	Assembly, adjustments and safety		
7	3	Exam 1		
8	3	Static balancing and Inspection techniques		
9	3	Inspection activities		

Block 3: Manual, Hydraulic and Electrical Circuits (3 hours)

Learning Objectives	Content	Personal Study Activities
Identify the linkages between the controls and the control surfaces.	 Mechanics Hydromechanics Electromechanics Electro-hydromechanics 	

Week	No. hours	Content of Practical Course	
10	3	Challenger 601 Cockpit operation and functional check	

Learning Objectives	Content	Personal Study Activities	
Perform the rigging of a flight control system on an airplane and on a helicopter.	 Researching applicable procedure in the aircraft maintenance manual Follow-up with adjustment procedure Using various required tools for adjusting Securing and locking fasteners and connectors Compliance with regulatory requirements 		
	Compliance with regulatory requirements regarding work on controls and control surfaces Writing a work report	Consult the recommended readings.	
		Review personal notes.	
Perform a repair on an aircraft control surface.	 Situation Analysis: identify the facts locate relevant information recognize health and safety risks and dangers Choosing a Solution be aware of normal operation check compliance of the flight control surface with relevant technical information o isolate the cause of the technical problem o determine the action to take make the repair o replace as necessary make adjustments Organisation of the Action Locate relevant aircraft procedures in an aircraft maintenance manual for -installation -removal 		
Perform a repair on an element of the linkage between an aircraft control and the control surface.	-disassembly -adjustment -repair -replacement Determine the parts, the hardware and the support equipment needed for the work to be done -organize the work area -carry out work in teams -secure and lock fasteners and connectors		
	Monitor the Results -comply with regulatory requirements concerning work on aircraft controls and control surfaces -check compliance of flight control surface with relevant technical information -write a work report		

Block 4: Maintenance of Controls and Control Surfaces (15 hours)

Week	No. hours	Content of Practical Course			
11	3	Work on aircraft			
12	3	Work on aircraft			
13	3	Work on aircraft			
14	3	Work on aircraft			
15	3	Exam 2			

Description of Evaluation Activity	Further Study of One of the Aspects of the Course	Learning Objective(s)	Due Date (approximate date assignment due or exam given)	Weighting (%)
Exam 1	Individual	Bloc 1 theo → 1.1.,1.2 Bloc 2 theo→ 2.3, 2.4, 2.5, 2.6	Week 6	10
Integration of course subjects Challenger vs Dornier	Individual / team (depending on the evaluation grid)	Bloc 1, 2 et 3 theo → 1.3, 1.4 2.1, 2.2, 2.6 3.1, 3.2	Week 10-11	10
ATA procedure redaction	Individual	Bloc 1, 2 et 3 theo → 1.3, 1.4 2.1, 2.2, 2.6 3.1, 3.2	Week 13	5
Exam 2	Individual	Blocks 2 and 3 Theory	Week 15	15

SYNTHESIS OF SUMMATIVE EVALUATION METHODS: THEORY

TOTAL : 40%

SYNTHESIS OF SUMMATIVE EVALUATION METHODS: PRACTICAL WORK

Description of Evaluation Activity	Context	Learning Objective(s)	Due Date (approximate date assignment due or exam given)	Weighting (%)
Diagram of a control circuit and control surfaces	Individual	Block 1, Practical Work	Week 4	5
Written and practical inspection (check) Exam 1	Individual. The exam includes a theory part, research and a practical part.	Blocks 1 and 2, Practical Work	Week 7	15
Report of maintenance activities	Written report in teams, individual observations (depending on the evaluation grid)	Blocks 2, 3 and 4, Practical Work	Week 4 to14	15
Written and practical inspection (check) Exam 2	Individual. The exam includes a theory part, research and a practical part.	Blocks 2, 3 and 4, Practical Work	Week 15	25

TOTAL : 60%

REQUIREMENTS TO PASS THE COURSE

(1) Passing Mark

The passing mark for this course is 60%.

(2) Attendance for Summative Evaluations

Attendance at summative evaluation activities is mandatory.

(3) Submitting Assignments

Assignments must be submitted by the date, place and time determined by the instructor. Any assignment submitted after the due date will be penalized 10% per day for each day it is late up to a week. After one week, the assignment will receive a zero (0).

(4) **Presentation of Written Work**

Students must follow the standards adopted by the Cégep for written work (« *Normes de présentation matérielle des travaux écrits* »). These can be found in the documentation center on the Cégep web site http://ena.cegepmontpetit.ca/liens-eclair under the heading *Liens éclair*, <u>Bibliothèques</u>, « Aide ».

CLASS PARTICIPATION EXPECTATIONS

- Safety rules in the hangar and around aircrafts
- Rules for safe use of equipment and aircrafts

REQUIRED MATERIAL

- The student notebooks must be downloaded from LEA for each theory classes.
- The student notebooks must be downloaded from LEA for each laboratory classes.
- Safety glasses, safety shoes and appropriate clothing for the laboratory are mandatory

MEDIAGRAPHY

Website related to the course: http://pmenard.ep.profweb.qc.ca/

- <u>Aircraft Flight control Actuation System Design</u>. E.T. Raymond and C.c. Chenoweth, Society of automotive Engineering Inc. Warrendale, 1993, 270 pages au complet.
- <u>Airplane Aerodynamics</u>. Daniel O'Dommasch. Sydney S.Shelby, Thomas F. Connolly, Pitman Publishing Corporation, 1956, New-York, 621 pages – chapitre 12, pages 388 to 421.
- Maintenance des aéronefs, AC4313-1A. F.A.A., Modulo éditeur, Mont-Royal, 1989, 316 pages chapitre 4, pages 99 to 114.
- <u>Cellules et systèmes d'aéronefs</u>. Didier Féminier, Modulo éditeur, Mont-Royal, 1982, 315 pages chapitres 5 et 6, pages 71 to 99.
- <u>Cellule et systèmes</u>. Alain Poujade, Institut aéronautique Jean Mermoz, 1985, Boulogne (France), 376 pages chapitres 4, 5, 6, pages 71 to 174.
- <u>Cellule et circuits</u>. J.C. Ripoli, École nationale de l'aviation civile, Toulouse, 1984, 241 pages pages 53 to 66.

- <u>Airframe and Powerplant Mechanics : Airframe Handbook, AC 65-15 ASG</u>. FAA, Basin, Wyo., Aviation Maintenance, 1976, 601 pages.
- <u>Aircraft Hydraulic Systems</u>. Crane, Dale, Basin, Wyo., Aviation Maintenance Publishers, C 1975, 91 pages.
- <u>Standard Aircraft Handbook</u>. Leavell Stuart et Stanley Bungay, 3e ed., Fallbrook, Californie, Aero, 1980, 155 pages.
- <u>A & P Technician Airframe Textbook</u>. Jeppesen, EA-ITP-A2, Englewood, Colorado, 2001, 794 pages

INSTITUTIONAL POLICIES AND REGULATIONS

All students enrolled at cégep Édouard-Montpetit must become familiar with and comply with the institutional policies and regulations. In particular, these policies address learning evaluations, maintaining admission status, French language policies, maintaining a violence-free and harassment-free environment, and procedures regarding student complaints. The French titles for the policies are: *Politique institutionnelle d'évaluation des apprentissages, les conditions particulières concernant le maintien de l'admission d'un étudiant, la Politique de valorisation de la langue française, la Politique pour un milieu d'études et de travail exempt de harcèlement et de violence, les procédures et règles concernant le traitement des plaintes étudiantes.*

The full text of these policies and regulations is accessible on the Cégep web site at the following address: <u>http://ena.cegepmontpetit.ca/l-ecole/reglements-et-politiques</u>. If there is a disparity between shortened versions of the text and the full text, the full text will be applied and will be considered the official version for legal purposes.

OTHER DEPARTMENTAL REGULATIONS

Students are encouraged to consult the website for the specific regulations for this course: http://guideena-en.cegepmontpetit.ca/department-rules/

NOTE: This Course Outline is a translation of the *Plan de cours* for 280-543-EM: *Maintenance des commandes et gouvernes d'aéronefs*. If there is a discrepancy, then the original French version will be considered the official version for legal purposes