

No du cours 280-119

Session HIVER 2000

Nom du cours	:	Avionique de puissance

Nom du (des) rédacteurs : Quoc Tuy Tran

Nom du (des) professeur(s) : Quoc Tuy Tran

Département : Avionique

Périodes de consultation :

Théorie	Professeur			Local		
	lundi	mardi	mercredi	jeudi	vendredi	
HEURE						
Pratique	Pr	ofesseur		Loc	cal	
	lundi	mardi	mercredi	jeudi	vendredi	

	- Idiidi	marai	merer car	Jeau.	vendrear
HEURE					
HEUKE					

Nom de l'étudiant : ______ (pratique)_____

PRÉSENTATION

Les technologies sont en permanente évolution et apportent des solutions efficaces, fiables et économiques en puissance électrique.

Ce cours a pour but de faire connaître à l'étudiant les techniques modernes de commutation, de contrôle et de transformation de l'énergie électrique à bord des aéronefs. Ces techniques font largement appel à l'utilisation des semi-conducteurs de puissance.

Par conséquent, ce cours requiert des connaissances de base en électricité, en circuits de semiconducteur et en machines électriques. À leur tour, les notions acquises dans ce cours seront nécessaires pour les études des cours subséquents (systèmes électriques, stage avionique...).

OBJECTIFS GÉNÉRAUX

Ce cours vise à donner aux étudiants les capacités nécessaires à :

- maîtriser les principes de fonctionnement de base des composants de semi-conducteur de puissance;
- analyser les fonctionnements des circuits d'application typiques dans les avions où il y a des composants de l'électronique de puissance;
- travailler avec les circuits de contrôle des servitudes électriques à bord des aéronefs.

OBJECTIFS SPÉCIFIQUES

Partie I : L'introduction à l'avionique de puissance

- Connaître les différents circuits de temporisation des générateurs d'impulsions.
- Connaître les différents dispositifs de déclenchement qui contrôlent les composants électroniques de puissance.
- Connaître les différents dispositifs de puissance.
- Maîtriser les techniques d'amorcage et le blocage des composants de puissance.
- Analyser le fonctionnement des circuits de servitude typiques dans les avions.

Partie II : L'alimentation et les conversions électriques

- Connaître les facteurs qui influencent le choix d'un type de l'installation électrique à bord d'un aéronef.
- Connaître les différents modes de conversions de l'énergie électrique.
- Expliquer le fonctionnement des différents circuits de conversion électrique typiques utilisés dans l'avion.

PLAN DÉTAILLÉ DE LA THÉORIE

I. COMPOSANTS DE L'AVIONIQUE DE PUISSANCE :

A- Introduction aux besoins de circuits avioniques de puissance :

- servitudes électriques
- contrôle
- protection

B- Circuit de temporisation :

- 1) Composants discrets (R,L,C):
 - construction
 - fonctionnement
 - caractéristiques
 - comportements des condensateurs et des bobines en régime impulsionnel

- 2) Composants à C.I.:
 - construction
 - fonctionnement
 - caractéristiques

C- Dispositifs de déclenchement :

- 1) Transistor uni-jonction (TUJ):
 - construction
 - fonctionnement
 - caractéristiques
- 2) Transistor unijonction complémentaire (TUJC):
 - construction
 - fonctionnement
 - caractéristiques
- 3) Transistor unijonction programmable (TUJP):
 - construction
 - fonctionnement
 - caractéristiques
- 4) Diode Shocley:
 - construction
 - fonctionnement
 - caractéristiques
- 5) DIAC:
 - construction
 - fonctionnement
 - caractéristiques

D- Dispositifs de puissance :

- 1) Transistor de puissance :
 - a) Bipolaire (NPN et PNP):
 - construction
 - fonctionnement
 - caractéristiques
 - circuits de protection
 - b) MOSFET:
 - construction
 - fonctionnement
 - caractéristiques
 - circuits de protection
- 2) Thyristor (SCR):
 - types
 - construction
 - fonctionnement
 - caractéristique
 - circuits de contrôle (amorçage et blocage)
 - application : protection, contrôle, détection

- 3) TRIAC
 - type
 - construction
 - fonctionnement
 - caractéristiques
 - applications : contrôle moteur, chauffage

E- Applications dans les aéronefs :

Études :

- des circuits typiques
- des systèmes d'allumage des moteurs à réaction
- d'un chargeur de batteries d'aéronefs
- d'un circuit de contrôle automatique des onduleurs rotatifs
- d'un système de régulation pour découpage d'un alternateur
- d'un système de contrôle de la vitesse d'un moteur d'induction triphasé

Examen 1 30%

II. L'ALIMENTATION ÉLECTRIQUE :

- A- Introduction aux besoins et aux contextes de la conception des systèmes électriques à bord :
 - facteurs qui influencent le choix de l'implantation du système
 - facteurs qui influencent le choix de types (AC, DC)
 - les avantages et désavantages d'un type par rapport à un autre

B- Conversion de l'énergie électrique :

- 1) Convertisseur DC-DC:
 - types : électromécanique, électronique
 - construction
 - fonctionnement
 - caractéristiques
 - applications
- 2) Convertisseur DC-AC:
 - types : statique, électromécanique
 - construction
 - fonctionnement
 - caractéristiques
 - applications
- 3) Convertisseur AC-DC:
 - types : monophasé, triphasé
 - construction
 - fonctionnement
 - caractéristiques
 - applications
- 4) Convertisseur AC-AC:
 - types : AC-DC-AC, cycloconvertisseur
 - construction
 - fonctionnement
 - caractéristiques
 - applications

Examen final 30%

LISTE DES LABORATOIRES

Introduction et sécurité au laboratoire. 2 Vérifications statiques et caractéristiques des composants électroniques. 3 Transistor unijonction. 4 Caractéristiques des thyristors. 5 Les circuits d'application de thyristors. 6 Amplificateurs de puissance pour les servomoteurs. 7-8 Technique de lecture de plan et dépannage des circuits de servitude. 9 Disjoncteur contrôle à distance. 10-11 Convertisseur DC-DC. Convertisseur DC-AC. 13 Système de contrôle de la vitesse d'un moteur induction triphasé. 14 Système de régulation de tension d'un alternateur triphasé. 15 EXAMEN.

MÉTHODOLOGIE

- Les cours théoriques seront donnés sous la forme magistrale.
- Les travaux pratiques seront exécutés en laboratoire.
- Les <u>travaux hors cours</u> sont : l'étude, la rédaction des rapports de laboratoire et les exercices. La consultation régulière des manuels de référence permettra à l'élève de réaliser ces travaux de manière satisfaisante. Tous les travaux écrits devront être présentés dans un «français correct».

ÉVALUATION FORMATIVE

L'évaluation formative sera assurée par :

- la correction d'exercices en classe.
- les annotations et commentaires du professeur sur les travaux écrits de l'élève.
- l'accès aux corrigés d'examens.
- · la consultation auprès du professeur.

ÉVALUATION SOMMATIVE

	00 points	
Laboratoires:	40 points	
Examen écrit à la fin de la session :	. 30 points	
Examen écrit à la mi-session :	. 30 points	

Le professeur alloue 10% du total des points attribués à un travail à la qualité du français écrit.

MÉDIAGRAPHIE

Manuels facultatifs:

- HAI VO-HO, MULLEN R., Électronique Industrielle, Les Éditions Le Griffon d'Argile Inc., 1983, 242 p.
- GENERAL ELECTRIC COMPANY, <u>SCR Manual Including Triacs and Other Thyristors</u>, 6e édition, 1979, 731 p.
- TOZZI, J., Électricité Avion, Institut Aéronautique Jean Mermoz, 1981, 192 p., compléments 11 p.
- LANDER, C.W., <u>Électronique de puissance</u>, McGraw-Hill, 1989, 441 p.
- Manuels de différents aéronefs.

<u>Manuel obligatoire</u> : CHAMPENOIS, A., <u>Alimentations thyristors et optoélectroniques</u>, Éditions du renouveau pédagoqique Inc., 1988, 621 p.

LISTE DU MATÉRIEL

Voir cahier de laboratoire.

NOTE : Bien lire les règlements du département d'avionique annexés à ce plan de cours.