

280-4A4-EM WINTER 2011 Avionics

COURSE OUTLINE

COURSE: Alternate-Current Avionics Systems

PROGRAM: 280.C0 Aircraft Maintenance Technology

DISCIPLINE: 280 Aeronautics

WEIGHTING: Theory: 2 Practical Work: 2 Personal Study: 2

Instructor(s)	Office	E Extension	⊠ email
Boyer, Serge	A-192	4546	serge.boyer@college-em.qc.ca
Boileau, Michel	A-192	4685	michel.boileau@college-em.qc.ca
Dubois, Marcel	A-192	4680	marcel.dubois@college-em.qc.ca
Gere, Andrei	A-187	4649	andrei.gere@college-em.qc.ca
Gillard, Pierre	A-187	4552	pierre.gillard@college-em.qc.ca
Gosselin, Raymond	A-187	4650	raymond.gosselin@college-em.qc.ca
Lemoyne, Pierre	A-192	4681	pierre.lemoyne@college-em.qc.ca
Rădulescu, Andrei	A-187	4648	andrei.radulescu@college-em.qc.ca
Rivière, Frantz	A-192	4675	frantz.riviere@college-em.qc.ca
Trần, Quốc Túy	A-187	4232	quoctuy.tran@college-em.qc.ca

OFFICE HOURS

	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
Morning					
Afternoon					

Coordinator(s)	Office	🕾 extension	⊠ e-mail or website
Gosselin, Raymond	A-187	4650	raymond.gosselin@college-em.qc.ca
Rivière Frantz	A-192	4675	frantz.riviere@college-em.qc.ca

CONTEXT OF THIS COURSE IN THE PROGRAM

This course is offered during the fourth session of the program.

By the end of the course, students will have developed:

- the ability to analyze circuits and electrical systems, generation circuits, distribution control of single and twin engine aircraft and various electric and electronic systems found in aeronautics
- the ability to apply methods and procedures to solve simple problems commonly encountered in aircraft electrical systems.

Students must keep this course outline for the duration of their studies as it will be useful for the comprehensive assessment at the end of the program.

MINISTERIAL OBJECTIVE(S) AND COMPETENCIES

O25T Perform the maintenance of direct-current circuits on an aircraft. (duration of training : 100 class periods)

Distribution o	f Competence 025T in the program:	
3 rd session	280-3D4-EM: Direct-Current Avionics Systems	55 periods out of 100
▶ 4 th session	280-4A4-EM: Alternate-Current Avionics Systems	30 periods out of 100
6 th session	280-6A3-EM: Avionics Maintenance	15 periods out of 100
Total:		100 periods

Verify the operation of simple alternating-current circuits on an aircraft (duration of training : 70 class periods)

	of Competence 0263 in the program:	
3 rd session	280-3D4-EM : Alternate-Current Avionics Systems	5 periods out of 70
4 th session	280-4A4-EM : Direct-Current Avionics Systems	30 periods out of 70
4 th session	280-4C5-EM : Aircraft Instrumentation	5 periods out of 70
6 th session	280-6A3-EM: Avionics Maintenance	30 periods out of 70
Total:		70 periods

TEACHING AND LEARNING STRATEGIES

Theory:

The theoretical course will be delivered in a lecture format with multimedia support when possible and appropriate.

Practical Work:

Acquisition of the theoretical knowledge will be facilitated by a series of experiments divided into 15 laboratory sessions.

COURSE PLAN

025T Maintain direct-current circuits on an aircraft.

Element of the Ministerial Objective	Learning Objective	Content	Personal Study Activities	Transport Canada Reference
,	 Describe the characteristics of a capacitor. Analyze circuits formed by a 	 Description of basic elements Physical characteristics Definition of the capacity of a capacitor, units used and Farad sub-multiples Types of fixed or variable capacitors Operating characteristics Accumulation of charges 		22.1.8
peration of passive com	DC voltage source, a resistor and capacitors.	 and stored energy Description of charge and discharge phenomena Time constant of RC circuit Calculation of equivalent capacity of a series or parallel combination of two or more capacitors 	Study: Read corresponding chapters in the assigned	
Inspect the direct current operation of passive components	Describe the basic characteristics of a coil.	 Description of the physical characteristics that influence the inductance value of a coil Inductance; units and sub-multiples used Types of coils Description of the field produced by a single coil. Influence of each parameter on the field. 	material. Homework: Problems to solve.	
#5	Analyze a circuit formed by a DC voltage source, a resistor and coils.	Time constant of the RL circuit Description of the phenomena in an RL circuit Calculation of equivalent induction of two series or parallel coils		

Element of the Ministerial Objective	Learning Objective	Content	Personal Study Activities	Transport Canada Reference
	Interpret blueprints and diagrams that include semi-conductor elements.	 Recognize various rectifier circuits Other types of diodes (Zener) Bipolar transistor symbols (NPN and PNP) Operation of various circuits using switching transistors (2) Symbols of various types of SCRs Operation of circuits using SCRs 		22.1.8. 22.1.18 22.2.40. 22.2.43.
electrical power supply and distribution system of an aircraft.	Describe the general theory of magnetization; make a connection between magnetic permeability and temporary and permanent magnets; define residual magnetism. Describe the general theory of electromagnetism and analyze the principles.	 Properties of a magnet Magnetic field and specific variables that describe it Magnetization curves, magnetic hysteresis curves Types of magnetic materials Magnetic field produced by electric current Resultant forces from the reaction between the magnetic field of a magnet and that of an electrical current Analysis of the principle of operation of electric motors Electromagnetic induction, induced voltage and polarity The generator and the dynamo Lenz – Faraday Law and 	Study: Read corresponding chapters in the assigned material. Homework: Problems to solve.	Appendix C Part 2 22.1.2
#3. Inspect the direct-current el	Check the operation of a DC generator.	its applications Principle of the production of electric direct current and components of a DC generator Controlling a generator and analysis of the devices used to accomplish this task Maintenance procedures and troubleshooting of DC generators		22.1.9 22.1.17 22.2.44 22.3.8 22.3.17 22.3.19 22.3.21 22.3.45 22.3.41

Element of the Ministerial Objective	Learning Objective	Content	Personal Study Activities	Transport Canada Reference
	Check the operation of a DC electric motor.	 Operation of a DC motor Aeronautical applications of DC motors Maintenance procedures and troubleshooting of DC motors 		22.1.9 22.1.17 22.3.2 22.3.12 22.3.25 22.3.44 22.3.45
	 Check a DC system (alternator paralleling controlled by a single control box) of a pistons twinengine aircraft. Check a DC system (with alternator paralleling each controlled by a regulator in continuous operation) of a pistons twin-engine aircraft. 	Check the following elements: (Within the context of this competence, the inspection is limited to performing a test procedure) - Aircraft power supplied by Battery and Ground Power Unit - Aircraft power supplied by left alternator - Aircraft power supplied by right alternator - Power supplied by left alternator using the left control box - Power supplied by right alternator using the left control box - Power supplied by left alternator using the right control box - Power supplied by left alternator using the right control box - Power supplied by right alternator using the right control box - Power supplied by right alternator using right control box - Interlock circuits - Load distribution between the two alternators - Overvoltage Protection - Regulation at low speed and cruising speed - Engine run-up on a twinengine piston using one control box at a time		22.3.9 22.3.27 22.3.41 22.3.42 22.3.45

Element of the Ministerial Objective	Learning Objective	Content	Personal Study Activities	Transport Canada Reference
Inspect the direct-current electrical power supply and distribution system of an aircraft.	7. Check a DC generation system of a turbine twin-engine aircraft	Check the following elements: (Within the context of this competence, the inspection is limited to performing a test procedure) - Aircraft power supplied by Battery and Ground Power Unit - Aircraft power supplied by left starter-generator - Aircraft power supplied by right starter-generator - Interlock circuits - Paralleling starter-generators - Load balancing system between the two starter-generators - Control and protection systems with discrete components - Voltage Regulation - Paralleling efficiency at various turbine rotation speeds		22.3.9 22.3.27 22.3.41 22.3.42 22.3.45
Inspect the direct-current ele	Check the DC distribution system in a pistons twin-engine aircraft and a turbine twinengine aircraft while respecting safety procedures.	Check the following elements: - Electric distribution protection devices - circuit-breakers - fuses - Electric distribution Control devices - on-off switches - relays - electric components of the model or aircraft - Electrical wiring		22.3.5 22.3.15 22.3.27 22.3.30
#3.	9. Diagnose the malfunctions of the DC power and distribution systems of a pistons twin- engine aircraft and a turbine twin-engine aircraft	Malfunctions identification by comparing the intended operation and the current operation of the aircraft's electrical generation system		22.3.27 22.3.34 22.3.45

Element of the Ministerial Objective	Learning Objective	Content	Personal Study Activities	Transport Canada Reference
#7. Perform the Electrical-Load Analysis of a direct-current circuit in an aircraft.	 Identify relevant information for Electrical-Load Analysis for a twin-engine: AC 43 13 FAR 23 JAR 23 Manufacturer's Manuals Identify the regulations concerning requirements to create a new Electrical-Load Analysis 	Type of monitoring Capacity of the electrical generation system Calculation of the maximum allowable electrical load in normal flight and in case of loss of one of the two sources Calculation of the aircraft's actual electric load Measurement of the aircraft's actual electrical load Conclusions on the aircraft's Electrical-Load Analysis	Study: Read corresponding chapters in the assigned material. Homework: Problems to solve.	

0263 Inspect the operation of simple alternating-current circuits on an aircraft

Element of the Ministerial Objective	Learning Objective	Content	Personal Study Activities	Transport Canada Reference
#1. Inspect alternating-current circuits on an aircraft.	Identify a sinusoidal wave form and its characteristics Use Ohm's Law and Kirchhoff's Laws to calculate the parameters of a resistive circuit powered by an alternative source.	 period frequency period frequency link instantaneous value peak value peak to peak value RMS (root-mean-square) value Mean value Angular velocity Phase angle Phase difference between two sinusoids AC single phase and three phase Comparison between DC and AC (RMS) Simple circuits with a single loop 	Study: Read corresponding chapters in the assigned material. Homework: Problems to solve.	22.2.2 22.2.12 22.2.13 22.2.14 22.2.23 22.2.24 22.2.17
#1. Inspe	Define the characteristics of AC- powered passive components: coils, capacitors, etc.	 Capacitive reactance Voltage-current phase shift in a capacitor Inductive reactance Voltage-current phase shift in an inductor 		22.2.4 22.2.5 22.2.18 22.2.20 22.2.21 22.2.23 22.2.45

Element of the Ministerial Objective	Learning Objective	Content	Personal Study Activities	Transport Canada Reference
alternating-current circuits on an aircraft.	Analyze AC-powered circuits containing resistors, capacitors and coils.	Impedance triangle drawing and calculation from graph of the impedance and phase angle of a circuit. Implementation of a reactance as filter Voltage measurement at the terminals of the components and the current in the components Measurement of the power Apparent power Reactive power Actual power	Study: Read corresponding chapters in the assigned material. Homework: Problems to solve.	22.2.15 22.2.16 22.2.22 22.2.27 22.2.41 22.2.45
#1. Inspect alternati	Check a faulty circuit using a multimeter.	The simple circuit is provided in the lab with a few elements mounted on the printed circuit board. The theoretical framework is provided to students who must then: - Analyze the circuit - Record the values of the current and voltage for each element of the circuit - Troubleshoot the circuit	Study: Read corresponding chapters in the assigned material. Homework: Lab reports	22.2.15 22.2.42
#2. Inspect passive components AC operation	Use alternating current to check various passive components to determine their condition.	Use of a multimeter and an impedance bridge	Study: Read corresponding chapters in the assigned material. Homework : Lab reports	22.2.42 22.2.45
#3. Inspect AC electrical generation and distribution on an aircraft.	Check the operation of a transformer.	Operation of a transformer Applications of a transformer in aeronautics: Transformer rectifier unit (TRU) Current transformer AC system monitoring Inspection of the performances of a TRU	Study: Read corresponding chapters in the assigned material. Homework : Lab reports	22.2.19 22.2.28 22.3.20 22.3.23 22.3.11

Element of the Ministerial Objective	Learning Objective	Content	Personal Study Activities	Transport Canada Reference
	Check the operation of an AC generator	 Principle of producing alternating electrical current and identification of components of an AC generator Examine the elements of the brushless alternator and analyse its operating principle 		22.2.1 22.2.7 22.2.8 22.2.25 22.2.29 22.2.30 22.2.31 22.3.18 22.3.22
current electrical generatir systems on an aircraft.	Check the operation of an AC electric motor	 Operation of AC electric motors Motor losses Comparison of AC and DC motors 	Study: Read corresponding chapters in the	22.2.6, 22.2.10 22.2.34, 22.2.35 22.2.36, 22.2.37 22.2.38, 22.2.48 22.3.25, 22.3.44 22.3.45
#3. Inspect the alternating-current electrical generating and distribution systems on an aircraft.	Check operation of special electrical machines.	Principle of the production of AC from DC and identifying components of an inverter Rotary inverters Static inverters Position sensors (synchro, LVDT, RVDT)	assigned material. Homework : Lab reports	22.2.32 22.3.24 22.2.9 22.3.26
#3. Inspect	5. Check AC generation system of an aircraft whose primary generation is DC.	Secondary AC generation : rotary or semiconductors invertors that convert primary DC power into AC power		22.3.9 22.3.27 22.3.41 22.3.42 22.3.45
#3. Inspect the alternating-current electrical generation and distribution systems on an aircraft.	Check the AC generation system on aircraft whose primary generation is AC	 Primary AC generation Description of the following elements: Aircraft power supplied by Ground Power Unit or Auxiliary Power Unit APU Power from left or right alternator Operation in case of loss of an alternator Primary AC generation Paralleling alternators Balancing actual alternator loads procedure GCU controlled alternator parameters System monitoring Simulation of power failure by modifying GCU controlled alternator parameters 	Study: Read corresponding chapters in the assigned material. Homework : Lab reports	22.2.33 22.3.9 22.3.27 22.3.41 22.3.42 22.3.45

Element of the Ministerial Objective	Learning Objective	Content	Personal Study Activities	Transport Canada Reference
of an aircraft.	Identify the information relevant to the analysis of AC electrical charge generation for aircraft with primary DC generation FAR 23 AC 43.13 JAR 23 Manufacturer's Manuals	 Capacity of the electrical generation system Calculation of the maximum allowable electric load Calculation of the actual electrical load of an aircraft Measurement of actual electrical load of an aircraft Conclusions regarding the electrical load analysis of the aircraft 	Study: Read corresponding chapters in the assigned material. Homework : Lab reports	22.2.47
#8. Make an Electric load analysis	2. Identify information relevant to the analysis of AC electrical load generation for aircraft with primary AC generation - FAR 25 - AC 43.13 - JAR 25 - Manufacturer's manuals 3. Identify regulations that require a mandatory new electrical load analysis	 Type of monitoring Capacity of the electrical generation system Calculating the maximum allowable electrical load in normal flight and in case of loss of single or multiple sources Calculating the actual electrical load of an aircraft Assessment of the actual electrical load of an aircraft Conclusions regarding the electrical load analysis of the aircraft 	Study: Read corresponding chapters in the assigned material. Homework: Lab reports	

Session Calendar:

Theory:

Peri	ods	Content		Personal Study	Objectives
Week 1	3 per	Semiconductor circuits	 Presentation of Course Outline Diode and Zener diode Bipolar transistors Transistor – switching operation Applications : DIM circuits, dome light (Bell 206); H mount of the trim control (Hughes 300) 	Study: Chapters in the corresponding reference manual and course notes Circuit analysis	#2.5 (025T)
Week s 2 and 3	4 per.	Operation of control circuits for DC electrical generation and distribution for twin-engine piston aircrafts	Battery circuit and external power Starter circuit Ignition circuits Control circuits for generators and DC output alternators Types of monitoring Generators and DC output alternators Paralleling Electrical Load Analysis Use the diagrams of the Piper Aztek, of the Cessna 337 and of the Aerocommander as	Study: Chapters in the corresponding reference manual and course notes Circuit analysis	#3.5 and #3.6, #3.8 and #3.9, #7 (025T), #8.1 and #8.3 (0263)
Week s 4 and 5	3 per.	Operation of control circuits for DC electrical generation and distribution for twin-engine turbine aircrafts	Battery circuit and external power Starter circuit Ignition circuits Control circuit for generators and DC output alternators Types of monitoring Generators and DC output alternators Paralleling Electrical Load Analysis Use the diagrams of the King Air and of the	Study: Chapters in the corresponding reference manual and course notes Homework: Questions on the operation of circuits	#3.7 to #3.9, #7 (025T), #8.1 and #8.3 (0263)
Week 6	2 per	Capacitors and coils in a DC circuit	BK 117 as examples of applications Description of the physical characteristics that influence the value of the capacity of a capacitor Charge and discharge phenomena description Capacitors association Application - fuel gauge capacitive circuits Description of the physical characteristics that influence the value of the inductance of a coil Description of the field produced by a single coil Coils association	Study: Chapters in the corresponding reference manual and course notes	#2.1 to #2.4 (025T)
Wee	2 per	Test 1 (20 points) Semi-conductors; e circuits		aircrafts; capacitors and coils in DC	#2, #3.5 to #3.9, #7 (025T)

Peri	ods	Content		Personal Study	Objectives
Week 8	2 per.	Sinusoidal wave (sine wave) Application of Ohm's and Kirchhoff's Laws on a resistive AC circuit	 Characteristics of the sine wave (period, frequency, special values, pulse, phase angle, phase shift) AC voltages and frequencies used in aeronautics Simple circuits with a single loop 	Study: Chapters in the corresponding reference manual and course notes Homework: Problems selected by the instructor	#1.1 and #1.2 (0263)
Week 9	2 per.	Coils and capacitors in AC-circuits	 Capacitive reactance Voltage current phase shift through a capacitor Inductive reactance Voltage current phase shift in an inductor Impedance triangle Active, reactive and apparent power 	Study: Chapters in the corresponding reference manual and course notes Homework: Problems selected by the instructor	#1.3 and #1.4 (0263)
Week 10	2 per.	Transformers and rectifiers	 The ideal transformer Transformer ratio Center-tap transformer Multi-tap transformer Autotransformer Magneto Diode rectifier circuits Applications: turbine ignition circuit; Ignition with magneto.	Study: Chapters in the corresponding reference manual and course notes Homework: Problems selected by the instructor Circuit analysis	#3.1 (0263)
Week 11	2 per.	AC electrical machines	 Three-phase systems in Y or delta Three-phase rectifier The TRU (transformer-rectifier unit) Rotary inverter Three-phase induction motor 	Study: Chapters in the corresponding reference manual and course notes	#3.2 to #3.5 (0263)
Weeks 12 to 14	6 per.	AC generation and utilities systems	 Primary AC generation Aircraft power supplied by Ground Power Unit (GPU) or Auxiliary Power Unit (APU) Paralleling alternators, load balancing Operation in case of loss of an alternator GCU control circuits Generation system monitoring Using the Challenger 601 documentation study the brushless alternators. Use documentation of the AC generation system for the Boeing 747 to study paralleling generators. Study the AC generation system of the Challenger 601. Examples of AC utilities (hydraulic pump drives, flap motor of the Challenger 601). 	Study: Chapters in the corresponding reference manual and course notes Homework: Questions on the operation of circuits	#3.6 (025T), #8.2 and #8.3 (0263)
Week 15	2 per.				#2, #3.5 to #3.9, #7 (025T) #1.1 to #1.4, AC#3 and #8 (0263)

Practical Work:

Peri	ods	Content		Personal Study	Objectives	
Week 1	2 per.	Introduction to the course Simulator for twinengine electrical generation system	 Course Outline Safety concepts Introduction to diagrams reading Introduction to the simulator for twin-engine electrical generation system (operator mode) 		#3.5, #3.6 (025)	
Week 2	2 per.	Presenting and inspecting a DC generation system of a twin-engine piston aircraft. Troubleshooting methods review	 Using a DC electrical system simulator of a twin-engine piston aircraft Identifying system components Measuring nominal values of the voltages for components in normal operation Analysing obtained nominal values Troubleshooting of short-circuits and open circuits 	Laboratory Preparation : Define the nominal theoretical values of voltages (battery, external power, and alternator) in the circuits.	#3.5, #3.6, #3.8 (025T)	
Weeks 3 to 5	6 per.	Troubleshooting a DC generation system of a twinengine piston aircraft	 Using the DC electrical system simulator of a twin-engine piston aircraft Detecting abnormal operation and identifying defective components by measuring voltage and comparing them with the nominal values 		#3.9 (025T)	
Weeks 6 and 7	4 per.	 A. Test: Individual exam on troubleshooting using the simulator. 2 periods per student. The power failures are open circuit or short-circuit types. Each student must have a failure on the generation circuit of a piston twin-engine and a failure in the distribution system. B. Inspecting semi-conductors: Individualy 2 periods. Inspecting transistor types TO-3, TO-220 and TO-92 with the multimeter Checking the family of 1N4000 diodes Checking a diode bridge Checking diodes of a DC output alternator 				
Weeks 8 and 9	4 per.	Engine run-up and adjustment of the regulators	 Aircrafts: Aerocommander and King Air. Documentation Search for Piper Aztek and Cessna 337. Work in half-group teams 	Questionnaire on inspection procedures. Evaluation of the implementation of the procedures.	#3.5, #3.6 and #3.8 (025T)	
Week 10	2 per.	Introduction to measuring AC voltage	 Demonstration by the teacher of a sine and the phase shift between two sines. RMS Voltage measurement (AC 1phase 60Hz) with a digital voltmeter. (on LabVolt) AC three-phase: Measurement of the voltage between lines, the phase voltage with a digital voltmeter. 	Laboratory Report : Report measurements and compare them with theoretical values. Comment on the results.	#1.1, #1.5, #2.1 (0263)	
Week	2 per.	King Air AC distribution and inverters inspection	Inspection of the inverters on an aircraft, King Air, Learjet	Questionnaire on inspection procedures.	#3.4, #3.5, #3.6 (0263)	

Peri	ods	Content		Personal Study	Objectives
Week 12	2 per.	Power-up of an aircraft with AC primary generation system (Challenger 601)	 Planning the power-up of the aircraft using the AC ground power unit Planning the power-up of the aircraft using the DC ground power unit DC buses power-up 	Questionnaire on inspection procedures. Evaluation of the implementation of the procedures.	#3.6 (0263)
Week 13	2 per.	Visualizing components of the AC primary generation system of a twin-engine turbine	Location of the generation system components of the Challenger 601 such as the TRU, IDG, GLC, GTC, GCU, etc.	Search for relevant information in the documentation of the aircraft	#3.6 (0263)
Week	2 per.	Static inspection of an alternator, a starter or a starter- generator	Static inspection of the alternator, starter and starter-generator parts according to the manufacturer's standards.	Laboratory Report : Report measurements taken. Comment on the results.	#3.2, #3.3 (0263)
Week 15	2 per.	Dynamic inspection of an alternator, a starter or a starter- generator	Under the supervision of the instructor, dynamic inspection of the operation of an alternator, a starter or a starter-generator according to the manufacturer's standards.	Laboratory Report : Report measurements and compare them with theoretical values. Comment on the results.	#3.2, #3.3 (0263)

SYNTHESIS OF SUMMATIVE EVALUATION METHODS

Theory

Description of Evaluation Activity	Context	Learning Objective(s)	Due Date (date assignment is due or exam given)	Weighting (%)
Homework including problems selected by the instructor.	Individual work Correction of homeworks will be handed to students at weeks 6 and 12 for study purposes	Complies with weekly objectives	Weeks 4, 6, 10, 11, 15	10%
Test 1	Duration : 2 periods Without documentation	#2, #3.5 to #3.9, #7 (025T)	Week 7	20%
FINAL ÉVALUATION OF THE COURSE	Duration: 2 periods Page of notes (letter format, recto-verso, handwritten)	All	Week 15	30%

Sub-total: 60%

Practical Work

Description of Evaluation Activity	Context	Learning Objective(s)	Due Date (date assignment is due or exam given)	Weighting (%)
Week 2 – Laboratory preparation. Report on the inspection on the simulator of the DC generation system of a piston twinengine aircraft.	Laboratory preparation with nominal theoretical values of the voltages (battery, external power, alternator) (50%). In teams of two. Compilation and analysis of the data. Individual evaluation of the laboratory work (25%): Measurements, manipulations, interpretation of the information Evaluation of the team report (25%).	#3.5, #3.6 et #3.8 (025T)	Laboratory Week 4.	3%
Weeks 6 and 7 – Troubleshooting test	Individual on the simulator (see the laboratory description). 50% of the mark will be for the troubleshooting procedure, 50% for finding the cause.	#3.5, #3.6, #3.8 et #3.9 (025T)	Week 6 or 7. 2 periods per student	12%
Report on the inspection of semi- conductors	Individual. Compilation and analysis of the data.	#2.5 (025T)	Week 7 or 8 2 periods per student	3%
Weeks 8 and 9 - Questionnaire on inspection procedures on an aircraft. Evaluation of the implementation of the procedures.	Individual questionnaire on the procedures. (50%). Individual evaluation on the implementation of the procedures (50%).	#3.5, #3.6 et #3.8 (025T)	During the laboratories for Weeks 8 and 9.	6%
Week 10 - Introduction to AC voltage measuring	In teams of two. Compilation and analysis of the data gathered. Individual evaluation of the laboratory work (50%): Measurements, manipulations, interpretation of information. Evaluation of the team report (50%).	#1.1, #1.5, #2.1 (0263)	Laboratory Week 11	2%

Description of Evaluation Activity	Context	Learning Objective(s)	Due Date (date assignment is due or exam given)	Weighting (%)
Week 11 – King Air Distribution and Inverters inspection		#1.1, #1.5, #2.1 (0263)	Laboratory Week 12	3%
Week 12 - Questionnaire on aircraft power-up procedures. Evaluation of the implementation of the procedures.	Individual questionnaire on inspection procedures. (50%) Individual evaluation of the implementation of the procedures. (50%)	#1.1, #3.1 to #3.3 (0263)	During the laboratory for Week 12	3%
Week 13 - Questionnaire on the location of the components of an AC generation system on an aircraft	Individual questionnaire	#3.6 (0263)	Beginning of the laboratory for Week 14	3%
Week 14 – Static inspection of an alternator, a starter or a starter-generator	In teams of two. Compilation and analysis of the data gathered. Individual evaluation of the laboratory work (50%): Measurements, manipulations, interpretation of information. Evaluation of the team report (50%)	#3.2, #3.3 (0263)	Laboratory Week 15.	3%
Week 15 – Dynamic inspection of an alternator	In teams of two. Compilation and analysis of the data gathered. Individual evaluation of the laboratory work (50%): Measurements, manipulations, interpretation of information. Evaluation of the team report (50%)	#3.2 (0263)	Laboratory Week 15.	2%

Sub-total: 40%

TOTAL: **100%**

REQUIREMENTS TO PASS THE COURSE

(1) Passing Mark

The passing mark is 60%.

(2) Summative evaluations Attendance

Students must be present for summative evaluations.

(3) Submitting Assignments

Assignments must be submitted by the date, place and time determined by the instructor Any assignment submitted after the due date will be penalized 10% per day for each work day it is late. On the sixth day after the due date, the assignment will receive a zero (0).

For a report to be corrected, students must have been present for the corresponding activities. If a student is absent for an activity or part of an activity, he or she will receive a zero (0) for the report corresponding to this activity or the proportionate amount of the part of an activity missed.

(4) Presentation of Written Work

Students must follow the standards adopted by the College for written work (*Normes de présentation matérielle des travaux écrits*). These can be found in the documentation centre on the College web site (http://ww2.college-em.qc.ca/biblio/normes.pdf) under the heading *Aides à la recherché*.

(5) Quality of the English language

The Instructor supports the use of the exact English terminology.

The formative evaluation also relates to the quality of oral and written English. If need be, the instructor recommends to the students to register for an English course.

When a given homework is considered to be unacceptable because of the quality of written English, the correction of this work will be delayed until work is returned in the standards set by the instructor. In this case, the homework handing-over delays penalties apply.

The professor can allocate 10% of the mark for a work to the quality of oral or written English.

CLASS PARTICIPATION EXPECTATIONS

Laboratory safety and use of the premises:

Students must be under the supervision of an instructor or a technician whenever they are in the laboratory or using the equipment, unless otherwise indicated.

Any student whose conduct in the laboratory poses a risk to others will receive a warning from the instructor and then be excluded from the laboratory until the case can be reviewed by the instructor and the coordinator of the Avionics Department.

REQUIRED MATERIAL

All material required for this course is provided by the college. Students must bring the required texts listed below to the theory and laboratory classes.

MEDIAGRAPHY

Required Text

- EISMIN, THOMAS K. Aircraft Electricity & Electronics, Fifth Edition, Glencoe, 2002.
- Course Notebook (collection of diagrams) (COOP).
- Laboratory Notebook (COOP).

Manual available on loan at the library:

BYGATE, J.E. - Aircraft Electrical Systems, Single and Twin Engine. IAP Inc., 1990.

Additional documents are available on the internet and the college's network (as indicated by the instructor).

INSTITUTIONAL POLICIES AND REGULATIONS

All students enrolled at Collège Édouard-Montpetit must become familiar with and comply with the institutional policies and regulations. In particular, these policies address learning evaluations, maintaining admission status, French language policies, maintaining a violence-free and harassment-free environment, and procedures regarding student complaints. The French titles for the policies are: Politique institutionnelle d'évaluation des apprentissages, les conditions particulières concernant le maintien de l'admission d'un étudiant, la Politique de valorisation de la langue française, la Politique pour un milieu d'études et de travail exempt de harcèlement et de violence, les procédures et règles concernant le traitement des plaintes étudiantes.

The full text of these policies and regulations is accessible on the College web site at the following address: www.college-em.qc.ca. If there is a disparity between shortened versions of the text and the full text, the full text will be applied and will be considered the official version for legal purposes.

OTHER DEPARTMENTAL REGULATIONS

Students are encouraged to consult the website for the specific regulations for this course: www.college-em.gc.ca/ena/avionique/reglements